设函数f(x)在定义域上是奇函数,对任意实数x有f(3/2+x)=-f(3/2-x)成立 证明f(x)是周期函数

问题描述:

设函数f(x)在定义域上是奇函数,对任意实数x有f(3/2+x)=-f(3/2-x)成立 证明f(x)是周期函数

f(3/2+x)=-f(3/2-x)
把3/2+x代替x带回原式得到f(3+x)=-f(-x)
把x+3代替x带到f(3+x)=-f(x)得到f(x+6)=-f(x+3)
整理得到f(x+6)=-f(x+3)=--f(-x)=f(-x)=f(x)