1/{(x-a)(b-x)}的不定积分怎么求?
问题描述:
1/{(x-a)(b-x)}的不定积分怎么求?
答
1/{(x-a)(b-x)}=[1/(x-a)-1/(x-b)]*1/(b-a)
[1/(x-b)^2-1/(x-a)^2]*1/(b-a)
答
(2x-(a+b))/(a-b) = k
-2/(a-b) * 积分1/(k^2-1) dk
eee
积分(1/(x-a)^2)dx=-(1/(x-a))
答
∫1/{(x-a)(b-x)}dx=[1/(a-b)]∫[1/(x-a)-1/(x-b)]dx
=[1/(a-b)][ln|x-a|-ln|x-b|]+C
=[1/(a-b)][ln|(x-a)/(x-b)|+C