能整除7或11或13这3个数的一些数有什么特点?(比如被2整除的数末位能被2整除)

问题描述:

能整除7或11或13这3个数的一些数有什么特点?(比如被2整除的数末位能被2整除)

前三位与除去前三位的数的差能被它们整除

o(∩_∩)o...你好
能整除7的数的特点:从一个数减去7的10倍、20倍...直到余下一个100以内的数为止,如果余数能被7整除,那么这个数就是7的倍数
能整除11的数的特点:把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.

例如:判断491678能不能被11整除.
—→奇位数字的和9+6+8=23
—→偶位数位的和4+1+7=12
23-12=11
因此,491678能被11整除.这种方法叫"奇偶位差法".
能整除13的数的特点:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

能被7整除的数的特征一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断6692能不能被7整除.竖式为:这种...

整除规则第七条(7):把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。
整除规则第十一条(11):若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
整除规则第十三条(13):若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。