设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)
问题描述:
设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)
答
1) y'=f'(tanx)* (tanx)'=f'(tanx) *(secx)^2
2) y'=f'(x^2)*2x+f'(x)/f(x)