设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=

问题描述:

设函数f(x)在区间(0,1)上连续,并设∫(0,1) f(x)dx=1,则∫ dx∫ f(0,1)dx∫(x,1) f(x)f(y)dy=