设某产品的成本函数C=100+7q+0.002q2,价格函数P=10-0.001q,其中q为需求量.试求试求价格为多少时,生产产品的利润最大?
问题描述:
设某产品的成本函数C=100+7q+0.002q2,价格函数P=10-0.001q,其中q为需求量.试求
试求价格为多少时,生产产品的利润最大?
答
生产的利润为
Y=P*q-C
=(10-0.001q)*q-(100+7q+0.002q^2)
=-0.003q^2+3q-100
=-0.003(q^2-1000q)-100
=-0.003(q-500)^2+650
所以 当q=500时,Y达到最大值650
此时P=10-0.001q=5