已知x,y,z∈R+,且1x+2y+3z=1,则x+y2+z3的最小值______.
问题描述:
已知x,y,z∈R+,且
+1 x
+2 y
=1,则x+3 z
+y 2
的最小值______. z 3
答
x,y,z∈R+,且
+1 x
+2 y
=1,则x+3 z
+y 2
=(x+z 3
+y 2
) (z 3
+1 x
+2 y
)3 z
=1+
+y 2x
+z 3x
+1+2x y
+2z 3y
+3x z
+13y 2z
≥3+2
+2
•y 2x
2x y
+2
•z 3x
3x z
=9.
•2z 3y
3y 2z
答案:9.
答案解析:x,y,z∈R+,且
+1 x
+2 y
=1,则x+3 z
+y 2
=(x+z 3
+y 2
) (z 3
+1 x
+2 y
)=1+3 z
+y 2x
+z 3x
+1+2x y
+2z 3y
+3x z
+1.由此可知x+3y 2z
+y 2
的最小值.z 3
考试点:基本不等式.
知识点:本题考查不等式的综合运用,解题时要认真审题,仔细解答.