设函数f(x)=cos(x+23π)+2cos2x2,x∈R.(1)求f(x)的值域;(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=3,求a的值.
问题描述:
设函数f(x)=cos(x+
π)+2cos22 3
,x∈R.x 2
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
,求a的值.
3
答
(I)f(x)=cos(x+
π)+2cos22 3
x 2
=cosxcos
π-sinxsin2 3
π+cosx+12 3
=-
cosx-1 2
sinx+cosx+1
3
2
=
cosx-1 2
sinx+1
3
2
=sin(x+
)+15π 6
因此函数f(x)的值域为[0,2]
(II)由f(B)=1 得sin(B+
)+1=1,即sin(B+5π 6
)=0,即B+5π 6
=0或π,B=5π 6
或-π 6
5π 6
又B是三角形的内角,所以B=
π 6
由余弦定理得b2=a2+c2-2accosB
即1=a2+3-3a,整理a2-3a+2=0
解得a=1或a=2
答:(I)函数f(x)的值域为[0,2]
(II)a=1或a=2
答案解析:(I)将f(x)=cos(x+
π)+2cos22 3
化简,变形后可以用三角函数的有界性有值域.x 2
(II)由f(B)=1 求出∠B,利用余弦定理建立关于a的方程求出a.
考试点:正弦函数的定义域和值域;正弦定理;余弦定理.
知识点:考查利用三角函数的有界性求值域与利用余弦定理解三角形,属基本题型,用来训练答题者熟练三角恒等变形公式与余弦定理.