交错级数的问题 重谢!
问题描述:
交错级数的问题 重谢!
现对任意自然数n有关于x的减(不一定严格)函数fn,定义域为x>=0
已知交错级数-f1+f2-f3+.对于定义域上任意x逐点收敛,问该级数是否在定义域上一致收敛?
答
当n为奇数,对x∈[0,n],取fn(x) = 1/n,对x > n,取fn(x) = 0.
当n为偶数,取fn(x) = 1/n.
则fn(x)都是关于x的减函数.
且对任意x0 ≥ 0,存在N > 0,使n > N时fn(x0) = 1/n.
因此交错级数-f1(x0)+f2(x0)-f3(x0)+...自某一项起满足Leibniz判别法的条件,级数在x0处收敛.
但是-f1+f2-f3+...不是一致收敛的:
因为对ε = 1/4,任取N > 0,存在x1 = 2^(N+1).
2^N > N,但级数在x1处自2^N至2^(N+1)-1项的部分和为:
1/2^N-0+1/(2^N+2)+...+1/(2^(N+1)-2)-0
> 2^(N-1)·1/2^(N+1) = 1/4 = ε.
根据Cauchy收敛准则,级数不是一致收敛的.