已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)
问题描述:
已知2^a*5^b=2^c*5^d=10,求证:(a-1)(d-1)=(b-1)(c-1)
答
由2^a*5^b=2^c*5^d=10得
2^(a-1)*5^(b-1)=2^(c-1)*5^(d-1)=1
取对数得
ln[2^(a-1)*5^(b-1)]=(a-1)ln2+(b-1)ln5=0
即(a-1)ln2=-(b-1)ln5(1)
ln[2^(c-1)*5^(d-1)]=(c-1)ln2+(d-1)ln5=0
即(c-1)ln2=-(d-1)ln5(2)
由(1)(2)联立得证
答
2^a×5^b=2^c×5^d=10
除以10
2^a×5^b/10=2^c×5^d/10=1
(2^a/2)×(5^b/5)=(2^c/2)×(5^d/5)=1
2^(a-1)×5^(b-1)=2^(c-1)×5^(d-1)=1
取对数
(a-1)lg2+(b-1)lg5=(c-1)lg2+(d-1)lg5=0
(a-1)lg2+(b-1)lg5=0
lg2/lg5=-(b-1)/(a-1)
=(c-1)lg2+(d-1)lg5=0
lg2/lg5=-(d-1)/(c-1)
所以-(b-1)/(a-1)=-(d-1)/(c-1)
(a-1)(d-1)=(b-1)(c-1)
答
证明:∵2^a•5^b=10=2×5,∴2^(a-1)•5^(b-1)=1,∴[2^(a-1)•5^(b-1)]^(d-1)=1^(d-1),①同理可证:[2^(c-1)•5^(d-1)]^(b-1)=1^(b-1),②由①②两式得[2^(a-1)•5^(b-1)]^(d-1)=[2^(c-1)...