∫[0,π/4] (tanx)^2dx求详细过程

问题描述:

∫[0,π/4] (tanx)^2dx求详细过程

注意有公式(tanx)^2+1=(secx)^2 (tanx)^2=(secx)^2 -1dtanx=(secx)^2dx ∫(secx)^2dx=tanx+C ∫[0,π/4] (tanx)^2dx=∫[0,π/4] [(secx)^2-1]dx=[tanx-x](0,π/4)=1+π/4