在△ABC中,已知内角A=三分之π,边BC=2根号3,设内角B=x,周长为y,求函数y=f(x)的解析式和定义域.
问题描述:
在△ABC中,已知内角A=三分之π,边BC=2根号3,设内角B=x,周长为y,求函数y=f(x)的解析式和定义域.
答
角A=π/3,角B=x,则角C=π-x-π/3=2π/3-x,边BC=2根号3,
由正弦定理得BC/sinA=AB/sinC=AC/sinB,
AB=BCsinC/sinA=(2根号3)sin(2π/3-x)/sin(π/3)
=(2根号3)sin(x+π/3)/[(根号3)/2]
=4sin(x+π/3),
AC=BCsinB/sinA=(2根号3)sinx/sin(π/3)=(2根号3)sinx/[(根号3)/2]=4sinx
周长为y=AB+BC+AC=4sin(x+π/3)+2根号3+4sinx=4[sinxcos(π/3)+cosxsin(π/3)]+2根号3+4sinx
=4[sinx*(1/2)+cosx*(根号3)/2]+2根号3+4sinx=6sinx+2(根号3)cosx+2根号3
即f(x)=6sinx+2(根号3)cosx+2根号3
B=x>0,且角C=π-x-π/3=2π/3-x>0,所以0