证明数列收敛,并求极限设a > 0 ,0 扫码下载作业帮拍照答疑一拍即得

问题描述:

证明数列收敛,并求极限
设a > 0 ,0

扫码下载作业帮
拍照答疑一拍即得

单调有界准则, 0 X n+1/ X n=(2 - a * X n)>1,知单调。再推出收敛
n趋于无穷,xn必然等于xn+1,设极限为t,t=t*(2-a*t)知t=1/a

Xn+1=Xn×(2-a*Xn)=-a×(Xn-1/a)²+1/a
→ (1/a-Xn+1)=a×(1/a-Xn)²
令Yn=1/a-Xn,则Yn+1=a×Yn² (Y1=1/a-X1,n≥2)
∴Yn+1=a^(2*n-1)×Y1^(2*n)=1/a×(a*Y1)^(2*n)
∴Xn+1=1/a-1/a×(a*Y1)^(2*n)
∵Y1=1/a-X1,即,0<Y1<1/a
∴0<a*Y1<1
∴0<(a*Y1)^(2*n)<1
∴0<Xn+1<1/a
当n→+∞时,(a*Y1)^(2*n)→0,Xn+1→1/a