数列cn=2(3n-1)/3的n次方,求cn前n项和tn

问题描述:

数列cn=2(3n-1)/3的n次方,求cn前n项和tn

cn=2n-2/3
tn=2-2/3+4-2/3+6-2/3+...+2n-2/3
=(2+2n)*n/2-2n/3
=n*n+n/3

tn-(1/3)tn=(4/3)+6[(1/3的平方)+(1/3的三次方)+……+(1/3的n次方)]-(6n-2)/3的(n+1)次方,则tn=[(-2/3)+6*(1/3)*(1-1/3的n次方)/(1-1/3)-(6n-2)/3的(n+1)次方]*(3/2)=(7/2)-2*(6n+7)/3的n次方...