数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
问题描述:
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
答
由an=Sn-S(n-1)
an=n(2n-1)an-(n-1)(2n-3)a(n-1)
整理后:
an/a(n-1)=(2n-3)/(2n+1)
累乘可得
an=3/(2n+1)(2n-1)
Sn=n(2n-1)an=3n/(2n+1)
答
sn-1=(n-1)(2n-3)an-1
an=n(2n-1)an-(n-1)(2n-3)an-1,整理得an/an-1=2n-3除以2n+1
用累积法,an=1/2乘以1/(2n-1)-1/(2n+1)
所以sn=n/(2n+1)
答
得s1为1/3,则s1/a1为1,则可知sn/an=n(2n-1),有因为an=sn-sn-1,所以得sn/sn-sn-1=2n-n,化简得sn/sn-1=(2n-n)/(2n-n-1)=n(2n-1)/(2n+1)(n-1),则sn=s2/s1×s3/s2……sn/sn-1×s1,只要带入几项就可...