如果Z=(1+cos x - i * sin x)/(1-cos x + i * sin x).证明Z= - i * cot (x/2)

问题描述:

如果Z=(1+cos x - i * sin x)/(1-cos x + i * sin x).证明Z= - i * cot (x/2)

Z分子分母同乘个1-cosx-isinx,然后化简,用半角公式把X变成X2化简即可

上下同时乘以1-cosx-isinx
Z=(1+cos x-isin x)(1-cosx-isinx)/[(1-cos x)^2+(sin x)^2]
=-i(sinx/(1-cosx)=-isin(x/2)cos(x/2)/[sin(x/2)]^2=-icot(x/2)