已知等差数列{An}满足a3=5,a5-2a2=3,又数列{Bn}中b1=3且b(n+1)=3bn

问题描述:

已知等差数列{An}满足a3=5,a5-2a2=3,又数列{Bn}中b1=3且b(n+1)=3bn
若数列an,bn的前n项和分别是Sn,Tn,且cn=[sn(2Tn+3)]÷n,求数列cn的前n项和Mn.
(错位相减法)谢谢!

设等差数列{an}公差为d
∵a3=5,a5-2a2=3
∴a1+2d=5,(a1+4d)-2(a1+d)=3 -a1+2d=3
解得a1=1,d=2
∴an=2n-1
Sn=n²
又数列{bn}满足b(n+1)=3bn
∴b(n+1)/bn=3
∴{bn}为等比数列,公比为3
又b1=3
∴bn=3^n
Tn=3(3^n-1)/(3-1)=3/2*(3^n-1)
cn=[Sn(2Tn+3)]÷n
=[n²3^(n+1)]/n
=n*3^(n+1)
Mn=3²+2*3³+3*3⁴+.+n*3^(n+1) ①
①×3:
3Mn=3³+2*3⁴+3*3^5+.+(n-1)*3^(n+1)+n*3^(n+2) ②
①-②:
-2Mn=3²+3³+3⁴+.+3^(n+1)-n*3^(n+2)
=9(3^n-1)/(3-1)-n*3^(n+2)
=(1/2-n)*3^(n+2)-9/2
∴Mn=9/4+(2n-1)3^(n+2)/4