已知椭圆C:x^2+y^2/4=1,直线l:y=mx+1.求证:不论m取何实数,l 与C 恒有两个不同的交点.

问题描述:

已知椭圆C:x^2+y^2/4=1,直线l:y=mx+1.求证:不论m取何实数,l 与C 恒有两个不同的交点.

证明:由题意可知a=2,b=1,c=√3(根号3);∴此椭圆与y轴交点为(0,2),(0,-2)∵直线l:y=mx+1 横过点(0,1)∴此点在椭圆内部∴将l:y=mx+1代入方程c:可得(m...