证明:在一个角的内部,到角的两边距离相等的点,在这个角的平分线上.(要求画出图形,写出已知.求证.证明)

问题描述:

证明:在一个角的内部,到角的两边距离相等的点,在这个角的平分线上.
(要求画出图形,写出已知.求证.证明)

已知:如图,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE.求证:点P在∠AOB的平分线上,证明:∵PD⊥OA,PE⊥OB,∴∠ODP=∠OEP=90°,在Rt△ODP和Rt△OEP中,OP=OPPD=PE,∴Rt△ODP≌Rt△OEP(HL),∴∠DOP=∠EOP...
答案解析:利用“HL”证明Rt△ODP和Rt△OEP全等,根据全等三角形对应角相等可得∠DOP=∠EOP,再根据角平分线的定义即可得证.
考试点:角平分线的性质.
知识点:本题考查了角平分线的判定,利用“HL”证明三角形全等是解题的关键.