若a>b>0,证明a+1/(a-b)b≥3

问题描述:

若a>b>0,证明a+1/(a-b)b≥3

a+1/(a-b)b
=(a-b)+b+1/(a-b)b
>=3*三次根号下[(a-b)*(b)*(1/(a-b)b)]
=3