如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.

问题描述:

如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连接C′E.
求证:四边形CDC′E是菱形.

证明:根据题意可知△CDE≌△C′DE,
则CD=C′D,∠C′DE=∠CDE,CE=C′E,
∵AD∥BC,∴∠C′DE=∠CED,
∴∠CDE=∠CED,∴CD=CE,
∴CD=C′D=C′E=CE,
∴四边形CDC′E为菱形.
答案解析:根据题意可知△CDE≌△C′DE,则CD=C′D,CE=C′E,要证四边形CDC′E为菱形,证明CD=CE即可.
考试点:菱形的判定.
知识点:本题利用了:1、全等三角形的性质;2、两直线平行,内错角相等;3、等边对等角;4、菱形的判定.