定义在(0,+∞)上的函数F(X),对任意的M,N∈(0,+∞)都有F(M*N)=F(M)+(N)成立.且当X大于1时,F(X)小于0(1)F(1)=?(2)证明:F(1/X)=-F(X)对任意X∈(0,+∞)都成立.(3)证明:F(X)在(0,+∞)上是减函数.(4)当F(2)=-1/2时,解不等式F(X-3)大于-1.

问题描述:

定义在(0,+∞)上的函数F(X),对任意的M,N∈(0,+∞)都有F(M*N)=F(M)+(N)成立.且当X大于1时,F(X)小于0
(1)F(1)=?(2)证明:F(1/X)=-F(X)对任意X∈(0,+∞)都成立.
(3)证明:F(X)在(0,+∞)上是减函数.(4)当F(2)=-1/2时,解不等式F(X-3)大于-1.

(1)F(1*1)=F(1)+F(1),F(1)=0
(2)X∈(0,+∞,有F(1)=F(X*1/X)=F(X)+F(1/X)=0,F(X)=-F(1/X)
(3)X1、X2∈(0,+∞),设X11,F(X2/X1) F(X2)=F(X1*X2/X1)=F(X1)+F(X2/X1) 由此可知F(X)在(0,+∞)上是减函数
(4)F(4)=F(2*2)=F(2)+F(2)=-1
由(3)F(X)在(0,+∞)上是减函数,可得X∈(0,4),F(X)>-1
由F(X-3)大于-1,0

(1)
f(mn) = f(m) + f(n)
put m=n =1
f(1) = f(1) + f(1)
=> f(1) =0
(2)
put m= x , n =1/x
f(1) = f(x) + f(1/x)
f(1/x) = -f(x)
(3)
x> y>0
x = ky ( k>1)
f(x) = f(ky)
= f(k) + f(y)
1, f(k) f(x)在(0,+∞)上是减函数
(4)
f(2) = -1/2
put m=n = 2
f(4) = f(2) + f(2)
= -1
f(x-3) > -1
f(x-3) > f(4)
x-3 x ie 0

1.F(x*1)=F(x)=F(x)+F(1),得F(1)=0
2.对X∈(0,+∞)有F(x*1/x)=F(1)=F(x)+F(1/x)=0,得F(1/X)=-F(X)
3.x1X2∈(0,+∞),x1>x2,x1/x2=k(k>1),则F(x1)=F(x2)+F(k),
当X大于1时,F(X)小于0,F(k)4.F(4)=2F(2)=-1,F(X)在(0,+∞)上是减函数,所以0

(1)F(1*1)=F(1)+F(1)
F(1)=0
(2)
F(1)=F(x*1/x)=F(x)+F(1/x)=0
所以F(1/X)=-F(X)
(3)
设0F(x2)-F(x1)=F(x2)+F(1/x1)=F(x2/x1)
因x2/x1>1
所以F(x2/x1)F(x2)-F(x1)F(x2)F(X)在(0,+∞)上是减函数
(4)
F(4)=F(2)+F(2)=-1
F(X-3)>F(4)
所以x-3>0且x-3得:3

(1)由于:f(mn)=f(m)+f(n)则令m=1,n=1则:f(1)=f(1)+f(1)则:f(1)=0(2)证明:令m=1/x,n=x则:f(1/x*x)=f(1/x)+f(x)则:f(x)+f(1/x)=f(1)=0即:f(1/x)=-f(x)故f(1/x)=-f(x)对任意X∈(0,+∞)都成立.(3)证明:由于:f...