求不定积分∫√(1-x^2)arcsinxdx

问题描述:

求不定积分∫√(1-x^2)arcsinxdx

∫√(1-x^2)arcsinxdx
=x√(1-x^2)arcsinx-∫x(1-xarcsinx/√(1-x^2))dx
=x√(1-x^2)arcsinx-x^2/2-∫(1-x^2-1)arcsinx/√(1-x^2))dx
=x√(1-x^2)arcsinx-x^2/2-∫√(1-x^2)arcsinxdx+∫arcsinx/√(1-x^2))dx
移项得:
∫√(1-x^2)arcsinxdx
=(1/2)x√(1-x^2)arcsinx-x^2/4+(arcsinx)^2/4+C