老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y随x的增大而减小;丁:当x<2时,y>0.已知这四人叙述都正确,请构造出满足上述所有性质的一个函数______.
问题描述:
老师给出一个函数,甲、乙、丙、丁四人各指出这个函数的一个性质,甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:y随x的增大而减小;丁:当x<2时,y>0.已知这四人叙述都正确,请构造出满足上述所有性质的一个函数______.
答
∵y随x的增大而减小.当x<2时,y>0.
∴可以写一个对称轴是x=2,开口向上的二次函数就可以.
∵函数的图象不经过第三象限.
∴所写的二次函数的顶点可以在x轴上方,
设顶点是(2,0),并且二次项系数大于0的二次函数,就满足条件.
如y=(x-2)2,答案不唯一.
故答案为:y=(x-2)2.
答案解析:x<2时,y>0,y随x的增大而减小,对称轴可以是x=2,开口向上的二次函数.函数的图象不经过第三象限,经过第一象限,二次函数的顶点可以在x轴上方.顶点式:y=a(x-h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.
考试点:反比例函数的性质.
知识点:此题主要考查了函数,解决本题的关键是能够根据图象的特点,得到函数应该满足的条件,转化为函数系数的特点.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.