已知a2+b2=1,x2有=1,求证ax=by
问题描述:
已知a2+b2=1,x2有=1,求证ax=by
数学人气:291 ℃时间:2020-10-02 07:08:44
优质解答
a²+b²=1,x²+y²=1
综合法:(a²+b²)(x²+y²)=1
1=a²x²+b²y²+a²y²+b²x²≥a²x²+b²y²+2abxy=(ax+by)²
所以ax+by≤1
分析法:
要证明ax+by≤1,
只需证:a²x²+b²y²+2abxy≤1
即证:a²x²+b²y²+2axby≤(a²+b²)(x²+y²)
即证:(ax-by)²≥0
显然成立.
综合法:(a²+b²)(x²+y²)=1
1=a²x²+b²y²+a²y²+b²x²≥a²x²+b²y²+2abxy=(ax+by)²
所以ax+by≤1
分析法:
要证明ax+by≤1,
只需证:a²x²+b²y²+2abxy≤1
即证:a²x²+b²y²+2axby≤(a²+b²)(x²+y²)
即证:(ax-by)²≥0
显然成立.
我来回答
类似推荐
答
a²+b²=1,x²+y²=1
综合法:(a²+b²)(x²+y²)=1
1=a²x²+b²y²+a²y²+b²x²≥a²x²+b²y²+2abxy=(ax+by)²
所以ax+by≤1
分析法:
要证明ax+by≤1,
只需证:a²x²+b²y²+2abxy≤1
即证:a²x²+b²y²+2axby≤(a²+b²)(x²+y²)
即证:(ax-by)²≥0
显然成立.