f(cosx)=2x+1,f(sinx)=?
问题描述:
f(cosx)=2x+1,f(sinx)=?
答
∫sin(x+π/3)dx
=-cos(x+π/3)
所以-cos(b+π/3)+cos(π/3+π/3)=0
cos(b+π/3)=cos2π/3
则b+π/3=2kπ±2π/3
b=2kπ+π/3,b=2kπ-π,且b≠-π/3
答
f(sinx)
=f[cos(π/2-x)]
=2(π/2-x)+1
=π-2x+1