已经a2+b2+c2+49=4a+6b+12c,求(1/a+1/b+1/c)abc的值

问题描述:

已经a2+b2+c2+49=4a+6b+12c,求(1/a+1/b+1/c)abc的值

a2+b2+c2+49=4a+6b+12c
a2-4a+9+b2-6b+9+c2-12c+36=0
a=2
b=3
c=6
代入得到
(1/a+1/b+1/c)abc=36

a^2+b^2+c^2-4a-6b-12c+4+9+36=0
(a^2-4a+4)+(b^2-6b+9)+(c^2-12c+36)=0
(a-2)^2+(b-3)^2+(c-6)^2=0
a=2,b=3,c=6
(1/2+1/3+1/6)abc
=1abc
=36