已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.

问题描述:

已知:如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,求证:①AC=BD;②∠APB=50°.

证明:①∵∠AOB=∠COD=50°,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD.
在△AOC和△BOD中,

AO=BO
∠AOC=∠BOD
OC=OD

∴△AOC≌△BOD(SAS),
∴AC=BD;
②∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=50°.
答案解析:①根据已知先证明∠AOC=∠BOD,再由SAS证明△AOC≌△BOD,所以AC=BD.
②由△AOC≌△BOD,可得∠OAC=∠OBD,再结合图形,利用角的和差,可得∠APB=50°.
考试点:全等三角形的判定与性质.

知识点:本题考查了全等三角形的性质和判定,三角形的内角和定理的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.