证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

问题描述:

证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)
=1/n->0
再由本身的非负性,有夹逼定理可证得极限是0