若f(1/1-x)=(1/x)f(x)+2,则f(3)=
问题描述:
若f(1/1-x)=(1/x)f(x)+2,则f(3)=
答
令x=3得,f(-1/2)=1/3*f(3)+2 (1)
令x=-1/2得,f(2/3)=-2*f(-1/2)+2 (2)
令x=2/3得,f(3)=3/2*f(2/3)+2 (3)
由(1)、(2)、(3)解得f(3)=-1/2
答
f(1/1-x)=(1/x)f(x)+2,则f(3)=
f(3)=f[1/(1-2/3)]=(3/2)f(2/3)+2=3f(2/3)/2+2
f(2/3)=f(1/(1+1/2))=(-2)f(-1/2)+2
f(-1/2)=f(1/1-3)=(1/3)f(3)+2
接上面上个方程的到f(3)=-1/2