x^2dx/(a^2-x^2)1/2的积分

问题描述:

x^2dx/(a^2-x^2)1/2的积分

∫x^2dx/√(a^2-x^2)
= -∫√(a^2-x^2)dx+∫a^2dx/√(a^2-x^2)
=-x√(a^2-x^2)-∫x^2dx/√(a^2-x^2)+a^2∫d(x/a)/√[1-(x/a)^2]
2∫x^2dx/√(a^2-x^2)=-x√(a^2-x^2)+a^2arcsin(x/a)+C1
∫x^2dx/√(a^2-x^2)=(-1/2)x√(a^2-x^2)+(1/2)a^2 arcsin(x/a)+C