lim [X/(x-1)-1/ln x]=?

问题描述:

lim [X/(x-1)-1/ln x]=?

lim [X/(x-1)-1/ln x]因为lim X/(x-1) 存在,lim 1/ln x 存在所以lim [X/(x-1)-1/ln x]=lim X/(x-1)-lim 1/ln xlim X/(x-1)=lim(1+1/x-1 )=1lim 1/ln x=0lim [X/(x-1)-1/ln x]=1...X→1,好像不对哦。是x无限接近于1是吧?我以为是趋近无穷大,那答案不一样:lim [X/(x-1)-1/ln x]=lim [1+1/(x-1) -1/lnx]=lim [(lnx-1)/lnx +1/(x-1)]=lim [(lnx-1)(x-1)+lnx]/(x-1)lnx=lim [ xlnx-x+1/(x-1)lnx]根据罗比达法则,对分子分母求导得xlnx-x+1/(x-1)lnx=[1+lnx-x+1]/[lnx+1-(1/x)]当x=1时,分母=0,分子=1所以lim [X/(x-1)-1/ln x] 为无穷大