已知x,y,z为非零实数,且满足x+y-z/z=y+z-x/x=z+x-y/y 求x+y+z/z的值
问题描述:
已知x,y,z为非零实数,且满足x+y-z/z=y+z-x/x=z+x-y/y 求x+y+z/z的值
答
x+y-z/z=y+z-x/x=z+x-y/y ,应用等比定理,得
(x+y-z+y+z-x+z+x-y)/(x+y+z)=(x+y-z)/z,所以(x+y+z)/(x+y+z)=(x+y-z)/z,即1=(x+y-z)/z,所以
x+y-z=z,x+y=2z,所以(x+y+z)/z=3z/z=3