如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.

问题描述:

如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.

证明:∵DF⊥AC,
∴∠DFA=∠EFC=90°.
∴∠A=∠DFA-∠D,∠C=∠EFC-∠CEF,
∵BD=BE,
∴∠BED=∠D.
∵∠BED=∠CEF,
∴∠D=∠CEF.
∴∠A=∠C.
∴△ABC为等腰三角形.
答案解析:要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.
考试点:等腰三角形的判定.


知识点:本题考查了等腰三角形的判定方法;角的等量代换是正确解答本题的关键.