高一必修五数学等比数列等差数列已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数(要有详细的过程)
问题描述:
高一必修五数学等比数列等差数列
已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数(要有详细的过程)
答
后三个数成等差数列,和为12,可得第三个数为4.
设公比为q,可前三个数的一元二次方程,得q为2/3或-2/5.
检验,均成立。
所以9,6,4,2或25,-10,4,18。
答
设这四个数为a,b-d,b,b+d,则(b-d)+b+(b+d)=12,∴b=4∵前三个数成等比数列∴(b-d)²=ab ∴(4-d)²=4a (*)又a+(4-d)+4=19 即a=11+d 代入(*)得d²-12d-28=0解得d=-2 或d=14当d=-2时a=9,此四数为9,6,4,2....