椭圆C:3x^2+4y^2=12,求m范围使对直线y=4x+m,c上有不同两点关于l对称
问题描述:
椭圆C:3x^2+4y^2=12,求m范围使对直线y=4x+m,c上有不同两点关于l对称
答
设关于直线对称两点为p(x1,y1),q(x2,y2)其所在直线方程为y=-1/4x+b带入椭圆方程,整理得 13x^2-8bx+16b^2-48=0 因为x1不等于x2,所以△>0
解得-根号13/2