如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是______.
问题描述:
如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是______.
答
过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,∵AB=CD,∴OQ=OF,∵OF过圆心O,OF⊥CD,∴CF=DF=2,∴EF=2-1=1,∵OF⊥CD,OQ⊥AB,AB⊥CD,∴∠OQE=∠AEF=∠OFE=90°,∵OQ=OF,∴四边形OQEF是正方形,∴OF=EF=1,在△OFD中...
答案解析:过O作OF⊥CD于F,OQ⊥AB于Q,连接OD,由AB=CD,推出OQ=OF根据正方形的判定u推出正方形OQEF,求出OF的长,在△OFD中根据勾股定理即可求出OD.
考试点:垂径定理;勾股定理;正方形的判定与性质;圆心角、弧、弦的关系.
知识点:本题主要考查对垂径定理,圆心角、弧、弦之间的关系,勾股定理,正方形的性质和判定等知识点的理解和掌握,能根据性质求出OF和DF的长是解此题的关键.