如图.已知OC是∠AOB的平分线,OE是∠BOD的平分线,若∠COE=45°,求∠AOD的度数.

问题描述:

如图.已知OC是∠AOB的平分线,OE是∠BOD的平分线,若∠COE=45°,求∠AOD的度数.

∵OC是∠AOB的平分线,OE是∠BOD的平分线,
∴∠BOC=

1
2
∠AOB=
1
2
(∠AOD+∠BOD),∠BOE=
1
2
∠BOD,
∴∠COE=∠BOC-∠BOE=
1
2
(∠AOD+∠BOD)-
1
2
∠BOD=
1
2
∠AOD,
∵∠COE=45°,
1
2
∠AOD=45°,
∴∠AOD=90°.
答案解析:根据角平分线的定义可得∠BOC=
1
2
∠AOB,∠BOE=
1
2
∠BOD,然后根据∠COE=∠BOC-∠BOE代入整理并求解即可.
考试点:角的计算;角平分线的定义.

知识点:本题考查了角的计算,角平分线的定义,熟记概念并整理出∠COE的表达式是解题的关键.