如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.
问题描述:
如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.
答
知识点:本题考查的是矩形的判定与性质、全等三角形的判定与性质、三角形内角和定理,涉及面较广,难度适中.
证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.
答案解析:连接AD,由题意可判断出四边形AEPF是矩形,再根据矩形的性质可得出AE=FP,由Rt△ABC中,∠BAC=90°,AB=AC,D为BC中点可得出AD=DC,∠1=∠2=45°=∠3,再由全等三角形的判定定理可得出△ADE≌△CDF,进而可得出结论.
考试点:矩形的判定与性质;三角形内角和定理;全等三角形的判定与性质.
知识点:本题考查的是矩形的判定与性质、全等三角形的判定与性质、三角形内角和定理,涉及面较广,难度适中.