数列{an}的前n项和记为Sn,a1=2,a(n+1)=Sn+n (1)求{an}(2)等差数列{bn}的各项为正,前n项和记为Tn且T3=9,又a1+b1,a2+b2,a3+b3成等比数列,求{bn}(3)在(2)的条件下,当n大于等于2时,求证1/(b1^2)+1/(b2^2)+······+1/(bn^2)小于3/4

问题描述:

数列{an}的前n项和记为Sn,a1=2,a(n+1)=Sn+n (1)求{an}(2)等差数列{bn}的各项为正,前n项和记为Tn
且T3=9,又a1+b1,a2+b2,a3+b3成等比数列,求{bn}
(3)在(2)的条件下,当n大于等于2时,求证1/(b1^2)+1/(b2^2)+······+1/(bn^2)小于3/4

(1)a[n+2]=2a[n+1]+1
a[1]=2
a[n]=2^n-1,n>1
(2)b[2]=3
b[1]+2,3+3,b[3]+7
b[n]=2n-1
(3)第三问好像有问题b[1]=1
1/b[1]^2=1>3/4