函数y=2cos方x+sin2x的最小值
问题描述:
函数y=2cos方x+sin2x的最小值
答
y=2(cosx)^2+sin2x
=cos2x+sin2x+1
=√2sin(2x+π/4)+1
正弦值为-1时,函数有最小值1-√2
答
用2倍角公式求解……
答
y=2cos²x-1+1+sin2x
=sin2x+cos2x+1
=√2(sin2x*√2/2+cos2x*√2/2)+1
=√2(sin2xcosπ/4+cos2xsinπ/4)+1
=√2sin(2x+π/4)+1
sin(2x+π/4)最小=-1
所以y最小=-√2+1