lim(x→0,y→0)sin(x∧2+ y∧2)/√(x∧2+y∧2)
问题描述:
lim(x→0,y→0)sin(x∧2+ y∧2)/√(x∧2+y∧2)
x∧2+y∧2/√(x∧2+y∧2)=√(x∧2+y∧2)这一
步怎么来的
答
令t=x^2+y^2,则有:lim(X->0,Y->0)sin(x^2+y^2)/(x^2+y^2)^(1/2)=lim(t->0)(t^(1/2)sint/t)又因为:lim(t->0)(sint/t)=1,故:lim(t->0)(t^(1/2)sint/t)=lim(t->0)(t^(1/2))×1=lim(X->0,Y->0)(x^2+y^2)^(1/2)=0p...