设L为抛物线y^2=x上从A(1,-1)到B(1,1)的一段弧.求∫xydx
问题描述:
设L为抛物线y^2=x上从A(1,-1)到B(1,1)的一段弧.求∫xydx
答
y² = x ==> y = ±√x
∫_L (xy) dx
= ∫_(点A到原点) (xy) dx + ∫_(原点到点B) (xy) dx
= ∫(1~0) x(-√x) dx + ∫(0~1) x(√x) dx
= ∫(0~1) (x√x + x√x) dx
= 2 · x^(3/2 + 1)/(3/2 + 1) |_0^1
= 2 · (2/5)x^(5/2) |_0^1
= 4/5