已知圆M的圆心M在Y轴上,半径为1.直线L:y=2x+2被圆M所截得弦长为(4√5)/5,且圆心M在直线L的下方.(1)求圆M的方程.(2)设A(t,0),B(t+5,0)(-4≤t≤-1).若AC、BC是圆M的切线,求△ABC面积的最小值

问题描述:

已知圆M的圆心M在Y轴上,半径为1.直线L:y=2x+2被圆M所截得弦长为(4√5)/5,且圆心M在直线L的下方.(1)求圆M的方程.(2)设A(t,0),B(t+5,0)(-4≤t≤-1).若AC、BC是圆M的切线,求△ABC面积的最小值.

设圆心坐标M(0,m),圆的方程为:x^2+(y-m)^2=1
(1)求直线与圆的交点:x^2 + ( 2x+2-m)^2=1,化简为:
5x^2 + 4(2-m)x + (3-m)(1-m) = 0
x1+x2 = 4(m-2)/5;x1*x2 = (3-m)(1-m)/5;
所以 (x1-x2)^2 = (x1+x2)^2 - 4x1*x2 = 16(m-2)^2/25 - 4(3-m)(1-m)/5 = -4(m^2-4m-1)/25
同理:(y1-y2)^2 = -16(m^2-4m-1)/25
弦长:(x1-x2)^2 + (y1-y2)^2 = 16/5 = -20(m^2-4m-1)/25
解得:m=1 或3.因为圆心在直线下方:m