在△ABC中,内角A,B,C,对边的边长分别是a,b,c,若B,A,C三角成等差数列,且a,b,c,三边成等差数列,(1)求bsinBc的值.(2)探求sinB+sinC取值范围.

问题描述:

在△ABC中,内角A,B,C,对边的边长分别是a,b,c,若B,A,C三角成等差数列,且a,b,c,三边成等差数列,
(1)求

bsinB
c
的值.
(2)探求sinB+sinC取值范围.

∵B,A,C三角成等差数列,∴2A=B+C,即A=60°,且B+C=120°,
∵a,b,c三边成等差数列,∴2b=a+c,
由正弦定理得2sinB=sinA+sinC,即2sin

B
2
cos
B
2
=2sin
A+C
2
cos
A-C
2
=2cos
B
2
cos
A-C
2

∴2sin
B
2
=cos
A-C
2
≤1,即sin
B
2
1
2

∴0<B≤60°,
若a≤b≤c,可得A≤B≤C,即A=B=C=60°;
若c≤b≤a,可得C≤B≤A,即A=B=C=60°,
∴△ABC为等边三角形,即a=b=c,
(1)
bsinB
c
=
3
2
b
=
3
2

(2)sinB+sinC=
3
2
+
3
2
=
3