设数列{bn}满足b1=2009,对n>1,b1+b2+.+bn=(1+2+.+n)bn,则b2008=

问题描述:

设数列{bn}满足b1=2009,对n>1,b1+b2+.+bn=(1+2+.+n)bn,则b2008=

b1+b2+.+bn=(1+2+.n)bn=n(n+1)bn/2b1+b2+b3+...+bn-1=bn(n+2)(n-1)/2 b1+..+bn-2=bn-1(n+1)(n-2)/2 bn-1=bn(n+2)(n-1)/2-bn-1(n+1)(n-2)/2 bn-1(n-1)n/2=bn(n+2)(n-1)/2 bn/bn-1=n/(n+2) bn=bn/bn-1*bn-1/bn-2*.*b1 ...