已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:(Ⅰ)方程有两个正根的充要条件(Ⅱ)方程至少有一个正根的充要条件.
问题描述:
已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:
(Ⅰ)方程有两个正根的充要条件
(Ⅱ)方程至少有一个正根的充要条件.
答
答案解析:(Ⅰ)方程有两个正根,首先要保证方程有两个根,即该方程为二次方程(二次项系数不为零),且△≥0,再由根与系数的关系,可得两根之和、两根之积均为正,构造不等式组,解不等式组即可得到答案.
(Ⅱ)方程至少有一个正根,包含这样几种情况:①方程有两个正根②方程有一个非正根和一正根③方程为一次方程,只有一正根.分类讨论后综合即可得到答案.
考试点:一元二次方程的根的分布与系数的关系;必要条件、充分条件与充要条件的判断.
知识点:遇到类二次方程/函数/不等式(即解析式的二次项系数含有参数)时,一般要进行分类讨论,分类的情况一般有:①先讨论二次项系数a是否为0,以确定次数②再讨论二次项系数a是否大于0,以确定对应函数的开口方向,③再讨论△与0的关系,以确定对应方程根的个数.