在三角形abc中a=三分之π bc=3则三角形周长为

问题描述:

在三角形abc中a=三分之π bc=3则三角形周长为

由正弦定理:a/sinA=b/sinB=c/sinC
∵BC=a=3,A=π/3
∴a/sinA=b/sinB=c/sinC=3/√3/2=2√3
∴b=2√3sinB,c=2√3sinC
∵A+B+C=π,A=π/3
∴C=2π/3-B
∴c=2√3sin(2π/3-B)
三角形ABC周长=a+b+c
=3+2√3sinB+2√3sin(2π/3-B)
=3+6sin(B+π/6)2√3sin(2π/3-B)的计算过程3+2√3sinB+2√3sin(2π/3-B)= 3+2√3sinB+2√3[sin(2π/3)cosB-cos(2π/3)sinB]= 3+2√3sinB+2√3[(√3/2)cosB+(1/2)sinB]= 3+2√3sinB+3cosB+√3sinB= 3+3cosB+3√3sinB= 3+6[(1/2)cosB+(√3/2)sinB]= 3+6[sin(π/6)cosB+cos(π/6)sinB]= 3+6sin(π/6+B)= 3+6sin(B+π/6)