已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E. (1)求证:BC=CE; (2)求证:AD/DB=AC/CB.
问题描述:
已知:如图,在△ABC中,∠ACB的平分线CD交AB于D,过B作BE∥CD交AC的延长线于点E.
(1)求证:BC=CE;
(2)求证:
=AD DB
. AC CB
答
证明:(1)∵CD平分∠ACB,
∴∠ACD=∠BCD.
又∵BE∥CD,
∴∠CBE=∠BCD,∠CEB=∠ACD.
∵∠ACD=∠BCD,
∴∠CBE=∠CEB.
故△BCE是等腰三角形,BC=CE.
(2)∵BE∥CD,根据平行线分线段成比例定理可得
=AD BD
,AC CE
又∵BC=CE,∴
=AD BD
.AC BC