∫dx/(x-2)平方(x-3)

问题描述:

∫dx/(x-2)平方(x-3)

令x-2=t, ∫dx/(x-2)平方(x-3)=∫(1/(t-1)-(t+1)/t^2)dt=ln(t-1)+1/t-lnt+c
然后带回即可

(x-3)/(x^2-3x+2)=A/(x-1)-B/(x-2) (x-3)/[(x-1)(x-2)]=A(x-2)/[(x-1)(x-2)-B(x-1)/[(x-1)(x-2)] (x-

∫{1/[(x-2)^2(x-3)] } dx1/[(x-2)^2(x-3)] = A/(x-2) +B/(x-2)^2 + C/(x-3)=> 1 = A(x-2)(x-3) +B(x-3) +C(x-2)^2coef.of x^2A+C =0 (1)put x=2B=-1coef.of constant 1= 6A-3B +4C3A+2C = -1 (2)(2)-2(1)A = -1C= 1...